Lista 4 - Relatividade Geral

Ricardo Antonio Mosna, setembro de 2023

Notação: nesta lista usaremos a convenção do Wald para os símbolos de Christoffel e curvatura, isto é, $\Gamma^c_{\ ab} = \frac{1}{2}\,g^{ck}\,(\partial_a g_{bk} + \partial_b g_{ak} - \partial_k g_{ab})$ e $(\nabla_a \nabla_b - \nabla_b \nabla_a)\,\omega_c = R_{abc}{}^d\omega_d$. Ainda, $R_{ac} = R_{abc}{}^b$ e $R = R_a{}^a$.

- 1. Considere um tensor A_{ijkl} , em um espaço vetorial V de dimensão n, com as seguintes simetrias:
 - (i) $A_{ijkl} = -A_{jikl}$,
 - (ii) $A_{ijkl} = -A_{ijlk}$,
 - (iii) $A_{ijkl} + A_{jkil} + A_{kijl} = 0.$
 - (a) Mostre que $A_{ijkl} = A_{klij}$.
 - (b) Mostre que se $A_{ijkl}x^iy^jx^ky^l=0$ para todos os vetores x^i, y^i de V, então $A_{ijkl}=0$.
 - (c) Mostre que o conjunto dos tensores que satisfazem as propriedades (i), (ii) e (iii) é um espaço vetorial de dimensão $\frac{n^2(n^2-1)}{12}$.
 - (d) Mostre que dado um tensor simétrico B_{ij} , o tensor $C_{ijkl} = B_{ik}B_{jl} B_{il}B_{jk}$ tem as mesmas simetrias que A_{ijkl} .
 - (e) Se g_{ij} é uma métrica em V e n=2, então $A_{ijkl}=K(g_{ik}g_{jl}-g_{il}g_{jk})$ para algum $K\in\mathbb{R}$.
 - (f) Como aplicação do item anterior, considere agora uma variedade (pseudo-)riemanniana M de dimensão 2, com métrica g_{ij} e conexão de Levi-Civita. Mostre que o tensor de curvatura de M é então dado por $R_{ijkl} = \frac{R}{2}(g_{ik}g_{jl} g_{il}g_{jk})$, onde R é o escalar de curvatura.¹
- 2. Faz diferença se substituirmos a derivada covariante pela derivada simples nas definições dos tensores A_{ab} e C_{abc} abaixo?
 - (a) $A_{ab} := \nabla_a V_b \nabla_b V_a$
 - (b) $C_{abc} := \nabla_a B_{bc} + \nabla_b B_{ca} + \nabla_c B_{ab}$, onde B_{ab} é tensor antissimétrico.
- 3. Mostre as seguintes identidades relacionadas às derivadas do tensor de Riemann R_{abc}^{d}:
 - (a) $\nabla_a R_{bcd}^{\ \ e} + \nabla_b R_{cad}^{\ \ e} + \nabla_c R_{abd}^{\ \ e}$ (identidade de Bianchi);

¹Como a curvatura escalar em duas dimensões é dada por 2K, onde K é a curvatura gaussiana, temos equivalentemente $R_{ijkl} = K(g_{ik}g_{jl} - g_{il}g_{jk})$.

- (b) $\nabla_b R_a^{\ b} = \frac{1}{2} \nabla_a R$.
- 4. Suponha que ξ^a é um vetor de Killing em uma variedade M.
 - (a) Mostre que $\nabla_a \nabla_b \xi_c = -R_{bca}{}^d \xi_d$;
 - (b) Mostre que $\xi^a \nabla_a R = 0$.
 - (c) Mostre que os valores de ξ^a e $\nabla_a \xi_b$ em um dado ponto $p \in M$ determinam ξ^a em toda a variedade M. Dica: as EDPs do item (a) são equivalentes ao sistema de EDPs dado por $\nabla_b \xi_c = L_{bc}$, $\nabla_a L_{bc} = -R_{bca}^{} \xi_d$, que por sua vez é equivalente a termos $v^b \nabla_b \xi_c = v^b L_{bc}$, $v^a \nabla_a L_{bc} = -v^a R_{bca}^{} \xi_d$ para todo v^a . Mas isso define um sistema de EDOs já que $v^a \nabla_a$ pode ser pensado como o operador D/dt ao longo de uma curva com vetor tangente v^a .
 - (d) Mostre que o número máximo de vetores de Killing em uma variedade de dimensão n é dado por n(n+1)/2.
- 5. Liste todos os vetores de Killing do espaço de Minkowski.
- 6. Na lista 3 encontramos uma parametrização $\mathbf{r}(\theta,\phi)$ para o toro como subvariedade de \mathbb{R}^3 .
 - (a) Calcule a curvatura escalar R para este caso e pinte o toro de cor vermelha na região onde R > 0 e azul na região onde R < 0.
 - (b) Foi mostrado na lista 3 que as curvas correspondentes a $\phi = \phi_0$ da parametrização $\mathbf{r}(\theta, \phi)$ são geodésicas. Tome duas dessas curvas, com valores de ϕ_0 próximos entre si, e calcule a aceleração relativa entre elas no espaço ambiente \mathbb{R}^3 . Compare seu resultado com a equação do desvio geodésico.
 - (c) Encontre todos os vetores de Killing deste toro. Dica: pode ser interessante começar sua busca descartando todos os vetores ξ^a que não satisfazem o item 2 do exercício 4.
- 7. Considere uma conexão arbitrária em uma variedade M (não necessariamente a de Levi-Civita). Definimos em aula os tensores de curvatura $R_{\alpha\beta\gamma}^{\delta}$ e torção $T_{\alpha\beta}^{\gamma}$ via suas componentes em uma base coordenada: $\nabla_{\alpha}\nabla_{\beta} \nabla_{\beta}\nabla_{\alpha}V^{\delta} = -R_{\alpha\beta\gamma}^{\delta}V^{c}$ e $T_{\alpha\beta}^{\gamma} = \Gamma_{\alpha\beta}^{\gamma} \Gamma_{\beta\alpha}^{\gamma}$. Mostre que os operadores associados agindo em campos de vetores, $R(X,Y)Z = R_{\alpha\beta\gamma}^{\delta}X^{\alpha}Y^{\beta}Z^{\gamma}\partial_{\delta}$ e $T(X,Y) = T_{\alpha\beta}^{\gamma}X^{\alpha}Y^{\beta}\partial_{\gamma}$, são então dados por $R(X,Y)Z = \nabla_{X}\nabla_{Y}Z \nabla_{Y}\nabla_{X}Z \nabla_{[X,Y]}Z$ e $T(X,Y) = \nabla_{X}Y \nabla_{Y}X [X,Y]$.
- 8. Mostre que o tensor de curvatura da conexão de Levi-Civita de uma variedade (pesudo)riemanniana M é nulo se, e somente se, existem coordenadas x^1, \ldots, x^n em M em que a
 métrica de M é dada por $ds^2 = -(dx^1)^2 \cdots (dx^k)^2 + (dx^{k+1})^2 + \cdots + (dx^n)^2$. Dica: tome

uma base ortonormal de T_pM em um ponto fixado $p \in M$ e estenda tais vetores a campos vetoriais por transporte paralelo (o que não deve depender do caminho se a curvatura é nula). Com isso, esses campos vetoriais têm derivadas covariantes nulas em todas as direções. Como a torção é nula, isso significa que tais vetores comutam entre si. O exercício 7 da lista 3 pode então ser usado para construir as coordenadas desejadas.

9. Considere um espaço-tempo com métrica

$$ds^{2} = -f(r)dt^{2} + h(r)dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}(\theta)d\phi^{2}.$$

Encontre as equações das geodésicas e mostre que os coeficientes de conexão não triviais neste caso são dados por:

$$\begin{split} &\Gamma^0_{\ 01} = f'/2f, & \Gamma^1_{\ 00} = f'/2h, & \Gamma^1_{\ 11} = h'/2h, \\ &\Gamma^1_{\ 22} = -r/h, & \Gamma^1_{\ 33} = -(r\sin^2\theta)/h, & \Gamma^2_{\ 12} = 1/r, \\ &\Gamma^2_{\ 33} = -\sin\theta\cos\theta, & \Gamma^3_{\ 13} = 1/r, & \Gamma^3_{\ 23} = \cot\theta, \end{split}$$

onde
$$x^0 = t$$
, $x^1 = r$, $x^2 = \theta$ e $x^3 = \phi$.

10. Calcule todos as componentes não triviais do tensor de Riemann para o espaço-tempo do exemplo anterior. Mostre que as componentes não triviais do tensor de Ricci são dadas por:

$$R_{00} = \frac{f''}{2h} - \frac{f'}{4h} \left(\frac{f'}{f} + \frac{h'}{h} \right) + \frac{f'}{rh},$$

$$R_{11} = -\frac{f''}{2f} + \frac{f'}{4f} \left(\frac{f'}{f} + \frac{h'}{h} \right) + \frac{h'}{rh},$$

$$R_{22} = 1 - \frac{1}{h} - \frac{r}{2h} \left(\frac{f'}{f} - \frac{h'}{h} \right),$$

$$R_{33} = \sec^2 \theta \, R_{22}.$$